Resilience and Recovery of Overexploited Marine Populations

See allHide authors and affiliations

Science  19 Apr 2013:
Vol. 340, Issue 6130, pp. 347-349
DOI: 10.1126/science.1230441

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

History Matters

Fishery-induced mortality is not the sole driver of fish population dynamics, and shifts in population abundance are also subject to ecological impacts. In a meta-analysis, Neubauer et al. (p. 347) showed how some fish-stock recoveries have been slower than theoretically predicted. They discovered that a species' exploitation history is also an important predictor of recovery. The data indicate that even extreme limitations in harvest pressure may not allow for the timely recovery of collapsed stocks.


Recovery of overexploited marine populations has been slow, and most remain below target biomass levels. A key question is whether this is due to insufficient reductions in harvest rates or the erosion of population resilience. Using a global meta-analysis of overfished stocks, we find that resilience of those stocks subjected to moderate levels of overfishing is enhanced, not compromised, offering the possibility of swift recovery. However, prolonged intense overexploitation, especially for collapsed stocks, not only delays rebuilding but also substantially increases the uncertainty in recovery times, despite predictable influences of fishing and life history. Timely and decisive reductions in harvest rates could mitigate this uncertainty. Instead, current harvest and low biomass levels render recovery improbable for the majority of the world’s depleted stocks.

View Full Text

Stay Connected to Science