You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Consciousness Arrives
Neurophysiological measures in human adults correspond to the transition between very brief, “unnoticeable,” and slightly longer-lived visual stimuli that penetrate deeply enough to leave a conscious imprint that subjects report they can “see.” Kouider et al. (p. 376) have performed parallel behavioral and neurophysiological studies in infants to identify a similar neural signal that appears to mark the development of visual consciousness.
Abstract
Infants have a sophisticated behavioral and cognitive repertoire suggestive of a capacity for conscious reflection. Yet, demonstrating conscious access in infants remains challenging, mainly because they cannot report their thoughts. Here, to circumvent this problem, we studied whether an electrophysiological signature of consciousness found in adults, corresponding to a late nonlinear cortical response [~300 milliseconds (ms)] to brief pictures, already exists in infants. We recorded event-related potentials while 5-, 12-, and 15-month-old infants (N = 80) viewed masked faces at various levels of visibility. In all age groups, we found a late slow wave showing a nonlinear profile at the expected perceptual thresholds. However, this late component shifted from a weak and delayed response in 5-month-olds (starting around 900 ms) to a more sustained and faster response in older infants (around 750 ms). These results reveal that the brain mechanisms underlying the threshold for conscious perception are already present in infancy but undergo a slow acceleration during development.