Research Article

A Massive Pulsar in a Compact Relativistic Binary

See allHide authors and affiliations

Science  26 Apr 2013:
Vol. 340, Issue 6131, 1233232
DOI: 10.1126/science.1233232

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

This article has a correction. Please see:

Structured Abstract


Neutron stars with masses above 1.8 solar masses (M), possess extreme gravitational fields, which may give rise to phenomena outside general relativity. These strong-field deviations lack experimental confrontation, because they become observable only in tight binaries containing a high-mass pulsar and where orbital decay resulting from emission of gravitational waves can be tested. Understanding the origin of such a system would also help to answer fundamental questions of close-binary evolution.

Embedded Image

Artist’s impression of the PSR J0348+0432 system. The compact pulsar (with beams of radio emission) produces a strong distortion of spacetime (illustrated by the green mesh). Conversely, spacetime around its white-dwarf companion (in light blue) is substantially less curved. According to relativistic theories of gravity, the binary system is subject to energy loss by gravitational waves.


We report on radio-timing observations of the pulsar J0348+0432 and phase-resolved optical spectroscopy of its white-dwarf companion, which is in a 2.46-hour orbit. We used these to derive the component masses and orbital parameters, infer the system’s motion, and constrain its age.


We find that the white dwarf has a mass of 0.172 ± 0.003 M, which, combined with orbital velocity measurements, yields a pulsar mass of 2.01 ± 0.04 M. Additionally, over a span of 2 years, we observed a significant decrease in the orbital period, P˙bobs=8.6±1.4 μs year−1 in our radio-timing data.


Pulsar J0348+0432 is only the second neutron star with a precisely determined mass of 2 M and independently confirms the existence of such massive neutron stars in nature. For these masses and orbital period, general relativity predicts a significant orbital decay, which matches the observed value, P˙bobs/P˙bGR=1.05±0.18.

The pulsar has a gravitational binding energy 60% higher than other known neutron stars in binaries where gravitational-wave damping has been detected. Because the magnitude of strong-field deviations generally depends nonlinearly on the binding energy, the measurement of orbital decay transforms the system into a gravitational laboratory for an as-yet untested gravity regime. The consistency of the observed orbital decay with general relativity therefore supports its validity, even for such extreme gravity-matter couplings, and rules out strong-field phenomena predicted by physically well-motivated alternatives. Moreover, our result supports the use of general relativity–based templates for the detection of gravitational waves from merger events with advanced ground-based detectors.

Lastly, the system provides insight into pulsar-spin evolution after mass accretion. Because of its short merging time scale of 400 megayears, the system is a direct channel for the formation of an ultracompact x-ray binary, possibly leading to a pulsar-planet system or the formation of a black hole.

Pulsar Tests Gravity

Because of their extremely high densities, massive neutron stars can be used to test gravity. Based on spectroscopy of its white dwarf companion, Antoniadis et al. (p. 448) identified a millisecond pulsar as a neutron star twice as heavy as the Sun. The observed binary's orbital decay is consistent with that predicted by general relativity, ruling out previously untested strong-field phenomena predicted by alternative theories. The binary system has a peculiar combination of properties and poses a challenge to our understanding of stellar evolution.


Many physically motivated extensions to general relativity (GR) predict substantial deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 ± 0.04 solar mass (M) pulsar in a 2.46-hour orbit with a 0.172 ± 0.003 M white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling.

View Full Text

Stay Connected to Science