Repeated Cortico-Striatal Stimulation Generates Persistent OCD-Like Behavior

See allHide authors and affiliations

Science  07 Jun 2013:
Vol. 340, Issue 6137, pp. 1234-1239
DOI: 10.1126/science.1234733

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

What Causes Obsessive Compulsive Disorder?

Obsessive compulsive disorder is a severe, chronic mental illness that affects millions of individuals. However, the mechanisms underlying this disease are still largely unknown (see the Perspective by Rauch and Carlezon Jr.). Ahmari et al. (p. 1234) stimulated glutamatergic pathways between the orbitofrontal cortex and the ventromedial striatum and used grooming to assess obsessive compulsive behavior in mice. Repetitive stimulation over days triggered changes in the neuronal responses of the ventromedial striatum. Over time, the behavior of the animals became independent of stimulation and could be prevented by the antidepressant fluoxetine. Burguière et al. (p. 1243) investigated the neural basis of obsessive compulsive symptoms in a mutant mouse that showed excessive expression of a conditioned form of grooming.


Although cortico-striato-thalamo-cortical (CSTC) circuit dysregulation is correlated with obsessive compulsive disorder (OCD), causation cannot be tested in humans. We used optogenetics in mice to simulate CSTC hyperactivation observed in OCD patients. Whereas acute orbitofrontal cortex (OFC)–ventromedial striatum (VMS) stimulation did not produce repetitive behaviors, repeated hyperactivation over multiple days generated a progressive increase in grooming, a mouse behavior related to OCD. Increased grooming persisted for 2 weeks after stimulation cessation. The grooming increase was temporally coupled with a progressive increase in light-evoked firing of postsynaptic VMS cells. Both increased grooming and evoked firing were reversed by chronic fluoxetine, a first-line OCD treatment. Brief but repeated episodes of abnormal circuit activity may thus set the stage for the development of persistent psychopathology.

View Full Text

Stay Connected to Science