You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Common Water
The Moon has been traditionally considered bone-dry, but in recent years a number of studies have shown that during mantle melting, the lunar mantle had as much water as Earth's upper mantle. Saal et al. (p. 1317, published online 9 May; see the cover) measured the isotopic composition of hydrogen dissolved in volcanic glass and olivine-hosted melt inclusions recovered from the Moon by the Apollo 15 and 17 missions. Lunar magmatic water was indistinguishable from the bulk water in carbonaceous chondrites and similar to terrestrial water, implying a common origin for the water contained in the interiors of Earth and the Moon.
Abstract
Water is perhaps the most important molecule in the solar system, and determining its origin and distribution in planetary interiors has important implications for understanding the evolution of planetary bodies. Here we report in situ measurements of the isotopic composition of hydrogen dissolved in primitive volcanic glass and olivine-hosted melt inclusions recovered from the Moon by the Apollo 15 and 17 missions. After consideration of cosmic-ray spallation and degassing processes, our results demonstrate that lunar magmatic water has an isotopic composition that is indistinguishable from that of the bulk water in carbonaceous chondrites and similar to that of terrestrial water, implying a common origin for the water contained in the interiors of Earth and the Moon.