You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Lunar Mascons Explained
The origin of lunar mass concentrations (or mascons), which appear as prominent bull's-eye patterns on gravitational maps of both the near- and far side of the Moon, has been a mystery since they were originally detected in 1968. Using state-of-the-art simulation codes, Melosh et al. (p. 1552, published online 30 May; see the Perspective by Montesi) developed a model to explain the formation of mascons, linking the processes of impact cratering, tectonic deformation, and volcanic extrusion.
Abstract
High-resolution gravity data from the Gravity Recovery and Interior Laboratory spacecraft have clarified the origin of lunar mass concentrations (mascons). Free-air gravity anomalies over lunar impact basins display bull’s-eye patterns consisting of a central positive (mascon) anomaly, a surrounding negative collar, and a positive outer annulus. We show that this pattern results from impact basin excavation and collapse followed by isostatic adjustment and cooling and contraction of a voluminous melt pool. We used a hydrocode to simulate the impact and a self-consistent finite-element model to simulate the subsequent viscoelastic relaxation and cooling. The primary parameters controlling the modeled gravity signatures of mascon basins are the impactor energy, the lunar thermal gradient at the time of impact, the crustal thickness, and the extent of volcanic fill.