Varied Response of Western Pacific Hydrology to Climate Forcings over the Last Glacial Period

See allHide authors and affiliations

Science  28 Jun 2013:
Vol. 340, Issue 6140, pp. 1564-1566
DOI: 10.1126/science.1233797

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Borneo Paleohydrology

Climate records of the last glacial cycle provide a good picture of how climate changed at high and middle latitudes, but fewer records of the tropics are available. Carolin et al. (p. 1564, published online 6 June) present data from a suite of precisely dated stalagmites from Borneo that reveal how the western tropical Pacific region behaved between 100,000 and 15,000 years ago, a period during which many abrupt climate changes occurred in other parts of the world. While the hydroclimate of Borneo changed in response to precessional forcing, it responded only weakly to the forces that produced glacial-interglacial changes in global climate.


Atmospheric deep convection in the west Pacific plays a key role in the global heat and moisture budgets, yet its response to orbital and abrupt climate change events is poorly resolved. Here, we present four absolutely dated, overlapping stalagmite oxygen isotopic records from northern Borneo that span most of the last glacial cycle. The records suggest that northern Borneo’s hydroclimate shifted in phase with precessional forcing but was only weakly affected by glacial-interglacial changes in global climate boundary conditions. Regional convection likely decreased during Heinrich events, but other Northern Hemisphere abrupt climate change events are notably absent. The new records suggest that the deep tropical Pacific hydroclimate variability may have played an important role in shaping the global response to the largest abrupt climate change events.

View Full Text

Stay Connected to Science