You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Isothermal Water Splitting
Solar concentrators can create extremely high temperatures that can drive chemical reactions, including the thermal splitting of water to provide hydrogen. A metal oxide catalyst is needed that is usually cycled between hotter conditions where it is reduced and cooler conditions where it is reoxidized by water. This cycling can limit catalyst lifetime, which can be costly. Muhich et al. (p. 540; see the Perspective by Roeb and Sattler) developed an approach that allowed the redox cycle to be driven isothermally, using pressure swings.
Abstract
Solar thermal water-splitting (STWS) cycles have long been recognized as a desirable means of generating hydrogen gas (H2) from water and sunlight. Two-step, metal oxide–based STWS cycles generate H2 by sequential high-temperature reduction and water reoxidation of a metal oxide. The temperature swings between reduction and oxidation steps long thought necessary for STWS have stifled STWS’s overall efficiency because of thermal and time losses that occur during the frequent heating and cooling of the metal oxide. We show that these temperature swings are unnecessary and that isothermal water splitting (ITWS) at 1350°C using the “hercynite cycle” exhibits H2 production capacity >3 and >12 times that of hercynite and ceria, respectively, per mass of active material when reduced at 1350°C and reoxidized at 1000°C.