You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Examining Y
The evolution of human populations has long been studied with unique sequences from the nonrecombining, male-specific Y chromosome (see the Perspective by Cann). Poznik et al. (p. 562) examined 9.9 Mb of the Y chromosome from 69 men from nine globally divergent populations—identifying population and individual specific sequence variants that elucidate the evolution of the Y chromosome. Sequencing of maternally inherited mitochondrial DNA allowed comparison between the relative rates of evolution, which suggested that the coalescence, or origin, of the human Y chromosome and mitochondria both occurred approximately 120 thousand years ago. Francalacci et al. (p. 565) investigated the sequence divergence of 1204 Y chromosomes that were sampled within the isolated and genetically informative Sardinian population. The sequence analyses, along with archaeological records, were used to calibrate and increase the resolution of the human phylogenetic tree.
Abstract
The Y chromosome and the mitochondrial genome have been used to estimate when the common patrilineal and matrilineal ancestors of humans lived. We sequenced the genomes of 69 males from nine populations, including two in which we find basal branches of the Y-chromosome tree. We identify ancient phylogenetic structure within African haplogroups and resolve a long-standing ambiguity deep within the tree. Applying equivalent methodologies to the Y chromosome and the mitochondrial genome, we estimate the time to the most recent common ancestor (TMRCA) of the Y chromosome to be 120 to 156 thousand years and the mitochondrial genome TMRCA to be 99 to 148 thousand years. Our findings suggest that, contrary to previous claims, male lineages do not coalesce significantly more recently than female lineages.