Groundwater Arsenic Contamination Throughout China

See allHide authors and affiliations

Science  23 Aug 2013:
Vol. 341, Issue 6148, pp. 866-868
DOI: 10.1126/science.1237484

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Arsenic and Populace

The solubility of arsenic in groundwater aquifers is controlled by a number of hydrologic and geochemical factors. In rural communities that rely on groundwater for drinking water, the risk from exposure may pose a public health threat, especially when groundwater pumping can increase arsenic solubility. In an effort to provide a focused assessment of risk to arsenic exposure from groundwater, Rodríguez-Lado et al. (p. 866; see the Perspective by Michael) constructed a geostatistical model that incorporates a number of factors that control arsenic solubility across China. Most of the risk centers in a few provinces—Xinjiang, Inner Mongolia, Henan, Shandong, and Jiangsu—but the total population exposed to arsenic levels above 10 micrograms per liter could be upwards of 19 million people.


Arsenic-contaminated groundwater used for drinking in China is a health threat that was first recognized in the 1960s. However, because of the sheer size of the country, millions of groundwater wells remain to be tested in order to determine the magnitude of the problem. We developed a statistical risk model that classifies safe and unsafe areas with respect to geogenic arsenic contamination in China, using the threshold of 10 micrograms per liter, the World Health Organization guideline and current Chinese standard for drinking water. We estimate that 19.6 million people are at risk of being affected by the consumption of arsenic-contaminated groundwater. Although the results must be confirmed with additional field measurements, our risk model identifies numerous arsenic-affected areas and highlights the potential magnitude of this health threat in China.

View Full Text

Stay Connected to Science