Microscopic Evidence for Liquid-Liquid Separation in Supersaturated CaCO3 Solutions

See allHide authors and affiliations

Science  23 Aug 2013:
Vol. 341, Issue 6148, pp. 885-889
DOI: 10.1126/science.1230915

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Making Crystals

The initial transition from a disordered solution to the formation of nuclei that grow into crystals continues to be a puzzle. Recent experiments suggested the formation of stable ordered clusters that appear prior to the formation of the first nuclei. Wallace et al. (p. 885; see the Perspective by Myerson and Trout) used molecular dynamics to look at the potential structure and dynamics of these clusters and lattice gas simulations to explore the population dynamics of the cluster populations prior to nucleation. A liquid-liquid phase separation process was observed whereby one phase becomes more concentrated in ions and becomes the precursor for nuclei to form.


Recent experimental observations of the onset of calcium carbonate (CaCO3) mineralization suggest the emergence of a population of clusters that are stable rather than unstable as predicted by classical nucleation theory. This study uses molecular dynamics simulations to probe the structure, dynamics, and energetics of hydrated CaCO3 clusters and lattice gas simulations to explore the behavior of cluster populations before nucleation. Our results predict formation of a dense liquid phase through liquid-liquid separation within the concentration range in which clusters are observed. Coalescence and solidification of nanoscale droplets results in formation of a solid phase, the structure of which is consistent with amorphous CaCO3. The presence of a liquid-liquid binodal enables a diverse set of experimental observations to be reconciled within the context of established phase-separation mechanisms.

View Full Text

Stay Connected to Science