Enhanced Seasonal Exchange of CO2 by Northern Ecosystems Since 1960

See allHide authors and affiliations

Science  06 Sep 2013:
Vol. 341, Issue 6150, pp. 1085-1089
DOI: 10.1126/science.1239207

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Downs and Ups

Every spring, the concentration of CO2 in the atmosphere of the Northern Hemisphere decreases as terrestrial vegetation grows, and every fall, CO2 rises as vegetation dies and rots. Climate change has destabilized the seasonal cycle of atmospheric CO2 such that Graven et al. (p. 1085, published online 8 August; see the Perspective by Fung) have found that the amplitude of the seasonal cycle has exceeded 50% at some latitudes. The only way to explain this increase is if extratropical land ecosystems are growing and shrinking more than they did half a century ago, as a result of changes in the structure and composition of northern ecosystems.


Seasonal variations of atmospheric carbon dioxide (CO2) in the Northern Hemisphere have increased since the 1950s, but sparse observations have prevented a clear assessment of the patterns of long-term change and the underlying mechanisms. We compare recent aircraft-based observations of CO2 above the North Pacific and Arctic Oceans to earlier data from 1958 to 1961 and find that the seasonal amplitude at altitudes of 3 to 6 km increased by 50% for 45° to 90°N but by less than 25% for 10° to 45°N. An increase of 30 to 60% in the seasonal exchange of CO2 by northern extratropical land ecosystems, focused on boreal forests, is implicated, substantially more than simulated by current land ecosystem models. The observations appear to signal large ecological changes in northern forests and a major shift in the global carbon cycle.

View Full Text

Stay Connected to Science