Topotactic Interconversion of Nanoparticle Superlattices

See allHide authors and affiliations

Science  13 Sep 2013:
Vol. 341, Issue 6151, pp. 1222-1225
DOI: 10.1126/science.1241402

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Sticking with DNA

One strategy for creating superlattices from nanoparticles is to coat the particles with DNA strands that have sticky ends that can be exploited to control the assembly of the lattice. This method can create binary lattices, but now Macfarlane et al. (p. 1222, published online 22 August) have succeeded in inserting a third type of nanoparticle into a predetermined site by tuning the strength of the relative DNA binding interactions.


The directed assembly of nanoparticle building blocks is a promising method for generating sophisticated three-dimensional materials by design. In this work, we have used DNA linkers to synthesize nanoparticle superlattices that have greater complexity than simple binary systems using the process of topotactic intercalation—the insertion of a third nanoparticle component at predetermined sites within a preformed binary lattice. Five distinct crystals were synthesized with this methodology, three of which have no equivalent in atomic or molecular crystals, demonstrating a general approach for assembling highly ordered ternary nanoparticle superlattices whose structures can be predicted before their synthesis. Additionally, the intercalation process was demonstrated to be completely reversible; the inserted nanoparticles could be expelled into solution by raising the temperature, and the ternary superlattice could be recovered by cooling.

View Full Text

Stay Connected to Science