You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Local Speeding
Early responses of species to climate change seemed to predict a general poleward response (or upward in mountains and downward in the ocean). Pinsky et al. (p. 1239) test an alternative hypothesis that relates more to the nature of climate change than to changes in temperature. Using nearly 50 years of coastal survey data on >350 marine taxa, they found that climate velocity was a much better predictor of patterns of change than individual species' characteristics or life histories. The findings suggest that responses to climate change largely track changes in local conditions.
Abstract
Organisms are expected to adapt or move in response to climate change, but observed distribution shifts span a wide range of directions and rates. Explanations often emphasize biological distinctions among species, but general mechanisms have been elusive. We tested an alternative hypothesis: that differences in climate velocity—the rate and direction that climate shifts across the landscape—can explain observed species shifts. We compiled a database of coastal surveys around North America from 1968 to 2011, sampling 128 million individuals across 360 marine taxa. Climate velocity explained the magnitude and direction of shifts in latitude and depth much more effectively than did species characteristics. Our results demonstrate that marine species shift at different rates and directions because they closely track the complex mosaic of local climate velocities.