Energy Release of the 2013 Mw 8.3 Sea of Okhotsk Earthquake and Deep Slab Stress Heterogeneity

See allHide authors and affiliations

Science  20 Sep 2013:
Vol. 341, Issue 6152, pp. 1380-1384
DOI: 10.1126/science.1242032

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Delineating Deep Faults

Most large, damaging earthquakes initiate in Earth's crust where friction and brittle fracture control the release of energy. Strong earthquakes can occur in the mantle too, but their rupture dynamics are difficult to determine because higher temperatures and pressures play a more important role. Ye et al. (p. 1380) analyzed seismic P waves generated by the 2013 Mw 8.3 Sea of Okhotsk earthquake—the largest deep earthquake recorded to date—and its associated aftershocks. The earthquake ruptured along a fault over 180-kilometer-long and structural heterogeneity resulted in a massive release of stress from the subducting slab. In a set of complementary laboratory deformation experiments, Schubnel et al. (p. 1377) simulated the nucleation of acoustic emission events that resemble deep earthquakes. These events are caused by an instantaneous phase transition from olivine to spinel, which would occur at the same depth and result in large stress releases observed for other deep earthquakes.


Earth’s deepest earthquakes occur in subducting oceanic lithosphere, where temperatures are lower than in ambient mantle. On 24 May 2013, a magnitude 8.3 earthquake ruptured a 180-kilometer-long fault within the subducting Pacific plate about 609 kilometers below the Sea of Okhotsk. Global seismic P wave recordings indicate a radiated seismic energy of ~1.5 × 1017 joules. A rupture velocity of ~4.0 to 4.5 kilometers/second is determined by back-projection of short-period P waves, and the fault width is constrained to give static stress drop estimates (~12 to 15 megapascals) compatible with theoretical radiation efficiency for crack models. A nearby aftershock had a stress drop one to two orders of magnitude higher, indicating large stress heterogeneity in the deep slab, and plausibly within the rupture process of the great event.

View Full Text

Stay Connected to Science