You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
RNA on the Attack
Plant microbial pathogens often work through protein effectors that are delivered into the plant cells to disrupt critical cellular functions. Weiberg et al. (p. 118; see the Perspective by Baulcombe) have now found that small RNAs (sRNAs) of the fungus Botrytis cinerea can play a similar role. After fungal infection of tomato or Arabidopsis leaves, the plant cells contained a suite of fungal-derived sRNAs. Three sRNAs were found to bind to the plant's own Argonaute protein, thereby silencing the plant's fungal defense genes.
Abstract
Botrytis cinerea, the causative agent of gray mold disease, is an aggressive fungal pathogen that infects more than 200 plant species. Here, we show that some B. cinerea small RNAs (Bc-sRNAs) can silence Arabidopsis and tomato genes involved in immunity. These Bc-sRNAs hijack the host RNA interference (RNAi) machinery by binding to Arabidopsis Argonaute 1 (AGO1) and selectively silencing host immunity genes. The Arabidopsis ago1 mutant exhibits reduced susceptibility to B. cinerea, and the B. cinerea dcl1 dcl2 double mutant that can no longer produce these Bc-sRNAs displays reduced pathogenicity on Arabidopsis and tomato. Thus, this fungal pathogen transfers “virulent” sRNA effectors into host plant cells to suppress host immunity and achieve infection, which demonstrates a naturally occurring cross-kingdom RNAi as an advanced virulence mechanism.