Crystal Structure of Na+, K+-ATPase in the Na+-Bound State

See allHide authors and affiliations

Science  04 Oct 2013:
Vol. 342, Issue 6154, pp. 123-127
DOI: 10.1126/science.1243352

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Pumping Out Sodium

Mammalian cells contain relatively high concentrations of potassium but low concentrations of sodium. This balance is maintained by an ion pump, the Na+, K+–adenosine triphosphatase, in an adenosine triphosphate–driven transport cycle that results in the export of three sodium ions and the import of two potassium ions. Structures of potassium-bound conformations of the pump have been determined. Now, Nyblom et al. (p. 123, published online 19 September) report on the high-resolution crystal structure of a Na+-bound conformation, which reveals conformational changes associated with Na+ binding.


The Na+, K+–adenosine triphosphatase (ATPase) maintains the electrochemical gradients of Na+ and K+ across the plasma membrane—a prerequisite for electrical excitability and secondary transport. Hitherto, structural information has been limited to K+-bound or ouabain-blocked forms. We present the crystal structure of a Na+-bound Na+, K+-ATPase as determined at 4.3 Å resolution. Compared with the K+-bound form, large conformational changes are observed in the α subunit whereas the β and γ subunit structures are maintained. The locations of the three Na+ sites are indicated with the unique site III at the recently suggested IIIb, as further supported by electrophysiological studies on leak currents. Extracellular release of the third Na+ from IIIb through IIIa, followed by exchange of Na+ for K+ at sites I and II, is suggested.

View Full Text

Stay Connected to Science