You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Misaligned Planets
Stars with multiple coplanar planets have not been seen to show misalignments between the equatorial plane of the star and the orbital plane of the planets—a diagnostic of the dynamical history of planetary systems. Huber et al. (p. 331) analyzed the Kepler 56 planetary system, which contains a giant-sized and an intermediate-sized planet. The planets have orbits that are close to coplanar, but the planetary orbits are misaligned with the stellar equator. A third companion in a wide orbit, which could be another star or a planet, could explain the misaligned configuration.
Abstract
Stars hosting hot Jupiters are often observed to have high obliquities, whereas stars with multiple coplanar planets have been seen to have low obliquities. This has been interpreted as evidence that hot-Jupiter formation is linked to dynamical disruption, as opposed to planet migration through a protoplanetary disk. We used asteroseismology to measure a large obliquity for Kepler-56, a red giant star hosting two transiting coplanar planets. These observations show that spin-orbit misalignments are not confined to hot-Jupiter systems. Misalignments in a broader class of systems had been predicted as a consequence of torques from wide-orbiting companions, and indeed radial velocity measurements revealed a third companion in a wide orbit in the Kepler-56 system.