You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Breaking Frog Defenses
The first line of immune defense against most fungal infections consists of innate immune effector cells, including macrophages and neutrophils. However, Fites et al. (p. 366) have found that the fungus currently decimating the world's amphibia, Batrachochytrium dendrobatidis, is readily engulfed by these cells, but that this does not effectively control the infection. The fungus releases cell-wall components that induce lymphocyte apoptosis and inhibit the proliferation of other nonlymphoid cell types, disarming lymphocyte-mediated responses to infection.
Abstract
The chytrid fungus, Batrachochytrium dendrobatidis, causes chytridiomycosis and is a major contributor to global amphibian declines. Although amphibians have robust immune defenses, clearance of this pathogen is impaired. Because inhibition of host immunity is a common survival strategy of pathogenic fungi, we hypothesized that B. dendrobatidis evades clearance by inhibiting immune functions. We found that B. dendrobatidis cells and supernatants impaired lymphocyte proliferation and induced apoptosis; however, fungal recognition and phagocytosis by macrophages and neutrophils was not impaired. Fungal inhibitory factors were resistant to heat, acid, and protease. Their production was absent in zoospores and reduced by nikkomycin Z, suggesting that they may be components of the cell wall. Evasion of host immunity may explain why this pathogen has devastated amphibian populations worldwide.