High-Resolution Mapping of the Spatial Organization of a Bacterial Chromosome

See allHide authors and affiliations

Science  08 Nov 2013:
Vol. 342, Issue 6159, pp. 731-734
DOI: 10.1126/science.1242059

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Caulobacter Chromosome

Chromosomal DNA must be highly compacted to fit within the tiny volume of the cell, while at the same time it must maintain a conformation that allows critical cellular processes access to the genome. Le et al. (p. 731, published online 24 October) analyzed the structure of the circular chromosome in the prokaryote Caulobacter crescentus by using chromosome conformation capture and deep-sequencing. Highly self-interacting regions (chromosomal interaction domains, or CIDs) were observed—similar to the topologically associated domains previously seen in eukaryotes. Supercoiling helped to establish CIDs, and CID boundaries were defined by highly expressed genes. CIDs appeared to be established during or shortly after DNA replication, and could potentially facilitate chromosomal segregation by preventing newly replicated chromosomes from becoming entangled.


Chromosomes must be highly compacted and organized within cells, but how this is achieved in vivo remains poorly understood. We report the use of chromosome conformation capture coupled with deep sequencing (Hi-C) to map the structure of bacterial chromosomes. Analysis of Hi-C data and polymer modeling indicates that the Caulobacter crescentus chromosome consists of multiple, largely independent spatial domains that are probably composed of supercoiled plectonemes arrayed into a bottle brush–like fiber. These domains are stable throughout the cell cycle and are reestablished concomitantly with DNA replication. We provide evidence that domain boundaries are established by highly expressed genes and the formation of plectoneme-free regions, whereas the histone-like protein HU and SMC (structural maintenance of chromosomes) promote short-range compaction and the colinearity of chromosomal arms, respectively. Collectively, our results reveal general principles for the organization and structure of chromosomes in vivo.

View Full Text

Stay Connected to Science