You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Stabilizing Silicon
Solar-driven water splitting has potential as an energy storage mechanism to supplement the direct conversion of sunlight to electricity. A submersed integrated device has been proposed both to absorb the light and to catalyze the reaction, but stability has been a problem. Kenney et al. (p. 836; see the Perspective by Turner) found that a nickel coating, thin enough to let light through, could protect a silicon absorber in the alkaline environment of a lithium/potassium borate electrolyte. The nickel also functioned as the oxidation catalyst, and the lithium ions helped to establish a protective film structure in situ.
Abstract
Silicon’s sensitivity to corrosion has hindered its use in photoanode applications. We found that deposition of a ~2-nanometer nickel film on n-type silicon (n-Si) with its native oxide affords a high-performance metal-insulator-semiconductor photoanode for photoelectrochemical (PEC) water oxidation in both aqueous potassium hydroxide (KOH, pH = 14) and aqueous borate buffer (pH = 9.5) solutions. The Ni film acted as a surface protection layer against corrosion and as a nonprecious metal electrocatalyst for oxygen evolution. In 1 M aqueous KOH, the Ni/n-Si photoanodes exhibited high PEC activity with a low onset potential (~1.07 volts versus reversible hydrogen electrode), high photocurrent density, and durability. The electrode showed no sign of decay after ~80 hours of continuous PEC water oxidation in a mixed lithium borate–potassium borate electrolyte. The high photovoltage was attributed to a high built-in potential in a metal-insulator-semiconductor–like device with an ultrathin, incomplete screening Ni/NiOx layer from the electrolyte.