Giant Convection Cells Found on the Sun

See allHide authors and affiliations

Science  06 Dec 2013:
Vol. 342, Issue 6163, pp. 1217-1219
DOI: 10.1126/science.1244682

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Giant Solar Cells

Convection motions within the Sun transport heat from its interior to its surface. The hot regions are seen as granular (∼1000 kilometers across) and supergranular (∼30,000 kilometers across) cells in the Sun. Using data from the Helioseismic Magnetic Imager on the Solar Dynamics Observatory, Hathaway et al. (p. 1217) found evidence for even larger cells that have long been predicted by theory but not unambiguously detected. The flows associated with these giant cells transport angular momentum toward the equator and are important for maintaining the Sun's equatorial rotation.


Heat is transported through the outermost 30% of the Sun’s interior by overturning convective motions. These motions are evident at the Sun’s surface in the form of two characteristic cellular structures: granules and supergranules (~1000 and ~30,000 kilometers across, respectively). The existence of much larger cells has been suggested by both theory and observation for more than 45 years. We found evidence for giant cellular flows that persist for months by tracking the motions of supergranules. As expected from the effects of the Sun’s rotation, the flows in these cells are clockwise around high pressure in the north and counterclockwise in the south and transport angular momentum toward the equator, maintaining the Sun’s rapid equatorial rotation.

View Full Text

Stay Connected to Science