You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
A Glimpse of HOON
Bonds between two oxygen atoms are relatively weak, as manifested in the sometimes explosive reactivity of O2 and various peroxides. Thus, although nitrous acid (HONO) can be rearranged on paper to an isomer with an O-O rather than N-O bond, nitrosyl-O-hydroxide (HOON) has been considered too unstable to be observed. Crabtree et al. (p. 1354) used microwave spectroscopy to detect HOON formation in a dilute gaseous mixture of NO and OH in neon. Isotopic substitutions enabled determination of its structure, which included an unusually long O-O bond.
Abstract
Nitric oxide (NO) reacts with hydroxyl radicals (OH) in the gas phase to produce nitrous acid, HONO, but essentially nothing is known about the isomeric nitrosyl-O-hydroxide (HOON), owing to its perceived instability. We report the detection of gas-phase HOON in a supersonic molecular beam by Fourier transform microwave spectroscopy and a precise determination of its molecular structure by further spectroscopic analysis of its 2H, 15N, and 18O isotopologs. HOON contains the longest O–O bond in any known molecule (1.9149 ± 0.0005 Å) and appears surprisingly stable, with an abundance roughly 3% that of HONO in our experiments.