You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
The Fit Get Fitter
Advances in modern biology have allowed us to measure evolutionary fitness and estimate the rate of fixation of beneficial mutations. Drawing on the Long-Term Evolution Experiment, studying the evolution of Escherichia coli in a constant environment, Wiser et al. (p. 1364, published online 14 November) demonstrate that even after 50,000 generations over 20 years, gains in fitness show no evidence of leveling off. Instead, fitness is following a power-law relationship that is dependent on epistasis and clonal interference.
Abstract
Experimental studies of evolution have increased greatly in number in recent years, stimulated by the growing power of genomic tools. However, organismal fitness remains the ultimate metric for interpreting these experiments, and the dynamics of fitness remain poorly understood over long time scales. Here, we examine fitness trajectories for 12 Escherichia coli populations during 50,000 generations. Mean fitness appears to increase without bound, consistent with a power law. We also derive this power-law relation theoretically by incorporating clonal interference and diminishing-returns epistasis into a dynamical model of changes in mean fitness over time.