Break-Induced Replication Repair of Damaged Forks Induces Genomic Duplications in Human Cells

See allHide authors and affiliations

Science  03 Jan 2014:
Vol. 343, Issue 6166, pp. 88-91
DOI: 10.1126/science.1243211

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

DNA Damage Repair

In human cancers, oncogene activation interferes with DNA replication, leading to DNA replication stress and DNA double-strand breaks (DSBs). Costantino et al. (p. 88, published online 5 December) identified two subunits of DNA polymerase delta, POL3 and POL4, as critical for survival of DNA replication stress in human cells. Both subunits were required for break-induced replication (BIR), which is required to repair a specific type of DSB, with both subunits possibly required for processive DNA synthesis in BIR. Tandem head-to-tail duplications and fold-back inversions were seen in replication-stressed cells, similar to those seen in human breast and ovarian cancers, suggesting that BIR is important for repairing damaged forks in cancer cells.


In budding yeast, one-ended DNA double-strand breaks (DSBs) and damaged replication forks are repaired by break-induced replication (BIR), a homologous recombination pathway that requires the Pol32 subunit of DNA polymerase delta. DNA replication stress is prevalent in cancer, but BIR has not been characterized in mammals. In a cyclin E overexpression model of DNA replication stress, POLD3, the human ortholog of POL32, was required for cell cycle progression and processive DNA synthesis. Segmental genomic duplications induced by cyclin E overexpression were also dependent on POLD3, as were BIR-mediated recombination events captured with a specialized DSB repair assay. We propose that BIR repairs damaged replication forks in mammals, accounting for the high frequency of genomic duplications in human cancers.

View Full Text

Stay Connected to Science