Conserved Class of Queen Pheromones Stops Social Insect Workers from Reproducing

See allHide authors and affiliations

Science  17 Jan 2014:
Vol. 343, Issue 6168, pp. 287-290
DOI: 10.1126/science.1244899

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Long Live the Queen

Eusociality is often considered to have arisen, at least in part, due to the inclusive fitness that workers gain through helping their queen sister to raise her offspring. Van Oystaeyen et al. (p. 287; see the Perspective by Chapuisat) characterized the sterility-inducing queen pheromone across three distantly related eusocial hymenopterans (a wasp, a bumblebee, and a desert ant) and synthesized data across 69 other species. Queen pheromones appear to be remarkably conserved, which suggests that reproductive manipulation has ancient roots.


A major evolutionary transition to eusociality with reproductive division of labor between queens and workers has arisen independently at least 10 times in the ants, bees, and wasps. Pheromones produced by queens are thought to play a key role in regulating this complex social system, but their evolutionary history remains unknown. Here, we identify the first sterility-inducing queen pheromones in a wasp, bumblebee, and desert ant and synthesize existing data on compounds that characterize female fecundity in 64 species of social insects. Our results show that queen pheromones are strikingly conserved across at least three independent origins of eusociality, with wasps, ants, and some bees all appearing to use nonvolatile, saturated hydrocarbons to advertise fecundity and/or suppress worker reproduction. These results suggest that queen pheromones evolved from conserved signals of solitary ancestors.

View Full Text

Stay Connected to Science