Charge Order Driven by Fermi-Arc Instability in Bi2Sr2−xLaxCuO6+δ

See allHide authors and affiliations

Science  24 Jan 2014:
Vol. 343, Issue 6169, pp. 390-392
DOI: 10.1126/science.1242996

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution


The understanding of the origin of superconductivity in cuprates has been hindered by the apparent diversity of intertwining electronic orders in these materials. We combined resonant x-ray scattering (REXS), scanning-tunneling microscopy (STM), and angle-resolved photoemission spectroscopy (ARPES) to observe a charge order that appears consistently in surface and bulk, and in momentum and real space within one cuprate family, BiEmbedded ImageSrEmbedded ImageLaEmbedded ImageCuOEmbedded Image. The observed wave vectors rule out simple antinodal nesting in the single-particle limit but match well with a phenomenological model of a many-body instability of the Fermi arcs. Combined with earlier observations of electronic order in other cuprate families, these findings suggest the existence of a generic charge-ordered state in underdoped cuprates and uncover its intimate connection to the pseudogap regime.

Copper-Oxide Superconductors

Copper-oxide superconductors have a complex electronic structure. A charge density order has been observed in two cuprate families; however, it has been unclear whether such an order exists in Bi-based compounds (see the Perspective by Morr). Comin et al. (p. 390, published online 19 December) and da Silva Neto et al. (p. 393, published online 19 December) address this question in single-layer and double-layer Bibased cuprates, respectively. For both families of materials, surface measurements by scanning tunneling spectroscopy agree with bulk measurements obtained through resonant elastic x-ray scattering, which suggests the formation of short-range correlations that modulate the charge density of the carriers over a range of dopings. Thus, charge ordering may represent a common characteristic of the major cuprate families.

View Full Text

Stay Connected to Science