Ubiquitous Interplay Between Charge Ordering and High-Temperature Superconductivity in Cuprates

See allHide authors and affiliations

Science  24 Jan 2014:
Vol. 343, Issue 6169, pp. 393-396
DOI: 10.1126/science.1243479

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution


Besides superconductivity, copper-oxide high-temperature superconductors are susceptible to other types of ordering. We used scanning tunneling microscopy and resonant elastic x-ray scattering measurements to establish the formation of charge ordering in the high-temperature superconductor Bi2Sr2CaCu2O8+x. Depending on the hole concentration, the charge ordering in this system occurs with the same period as those found in Y-based or La-based cuprates and displays the analogous competition with superconductivity. These results indicate the similarity of charge organization competing with superconductivity across different families of cuprates. We observed this charge ordering to leave a distinct electron-hole asymmetric signature (and a broad resonance centered at +20 milli–electron volts) in spectroscopic measurements, indicating that it is likely related to the organization of holes in a doped Mott insulator.

Copper-Oxide Superconductors

Copper-oxide superconductors have a complex electronic structure. A charge density order has been observed in two cuprate families; however, it has been unclear whether such an order exists in Bi-based compounds (see the Perspective by Morr). Comin et al. (p. 390, published online 19 December) and da Silva Neto et al. (p. 393, published online 19 December) address this question in single-layer and double-layer Bibased cuprates, respectively. For both families of materials, surface measurements by scanning tunneling spectroscopy agree with bulk measurements obtained through resonant elastic x-ray scattering, which suggests the formation of short-range correlations that modulate the charge density of the carriers over a range of dopings. Thus, charge ordering may represent a common characteristic of the major cuprate families.

View Full Text

Stay Connected to Science