You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Oops, That's Not Right…
Evaluating our actions, and detecting our errors, is crucial for adaptive behavior. These fundamental executive functions are intensively studied in cognitive and social neuroscience, but their anatomical basis remains poorly characterized. Using intracerebral electroencephalography in patients being prepared for epilepsy surgery, Bonini et al. (p. 888) found that, contrary to what is widely assumed, the supplementary motor area, and not the anterior cingulate cortex, plays a leading role in these processes. The data provide a precise spatio-temporal description of the cortical network underlying action monitoring and error processing.
Abstract
The capacity to evaluate the outcomes of our actions is fundamental for adapting and optimizing behavior and depends on an action-monitoring system that assesses ongoing actions and detects errors. The neuronal network underlying this executive function, classically attributed to the rostral cingulate zone, is poorly characterized in humans, owing to the limited number of direct neurophysiological data. Using intracerebral recordings, we show that the leading role is played by the supplementary motor area (SMA), which rapidly evaluates successful and erroneous actions. The rostral part of medial prefrontal cortex, driven by the SMA, was activated later and exclusively in the case of errors. This suggests a hierarchical organization of the different frontal regions involved in implementation of action monitoring and error processing.