You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
A Different Route
The plant hormone auxin regulates a variety of developmental processes and responses to environmental inputs, often via changes in gene transcription. Xu et al. (p. 1025) analyzed a signaling pathway involving ABP1 (auxin-binding protein 1) that affects the cytoskeleton and endocytosis in Arabidopsis without changing gene transcription. Instead, ABP1 functions at the cell surface to bind auxin and a family of membrane kinases, thereby activating intracellular guanosine triphosphatases to initiate important developmental changes in cell shape.
Abstract
Auxin-binding protein 1 (ABP1) was discovered nearly 40 years ago and was shown to be essential for plant development and morphogenesis, but its mode of action remains unclear. Here, we report that the plasma membrane–localized transmembrane kinase (TMK) receptor–like kinases interact with ABP1 and transduce auxin signal to activate plasma membrane–associated ROPs [Rho-like guanosine triphosphatases (GTPase) from plants], leading to changes in the cytoskeleton and the shape of leaf pavement cells in Arabidopsis. The interaction between ABP1 and TMK at the cell surface is induced by auxin and requires ABP1 sensing of auxin. These findings show that TMK proteins and ABP1 form a cell surface auxin perception complex that activates ROP signaling pathways, regulating nontranscriptional cytoplasmic responses and associated fundamental processes.