Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting

See allHide authors and affiliations

Science  28 Feb 2014:
Vol. 343, Issue 6174, pp. 990-994
DOI: 10.1126/science.1246913

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

A Boost for Bismuth Vanadate

In theory, given its light-absorption spectrum, bismuth vanadate should be an effective photoanode for solar water-splitting. However, in prior studies, few of the “holes” generated upon photoexcitation have persisted long enough to strip electrons from water. Kim and Choi (p. 990, published online 13 February) now show that the use of a hydrophobic vanadium source in the semiconductor's synthesis results in a high-surface-area morphology with substantially enhanced hole lifetimes. Deposition of two successive catalyst layers enhanced the proportion of holes that reacted with water at the surface, thereby raising the efficiency of the oxygen evolution reaction.


Bismuth vanadate (BiVO4) has a band structure that is well-suited for potential use as a photoanode in solar water splitting, but it suffers from poor electron-hole separation. Here, we demonstrate that a nanoporous morphology (specific surface area of 31.8 square meters per gram) effectively suppresses bulk carrier recombination without additional doping, manifesting an electron-hole separation yield of 0.90 at 1.23 volts (V) versus the reversible hydrogen electrode (RHE). We enhanced the propensity for surface-reaching holes to instigate water-splitting chemistry by serially applying two different oxygen evolution catalyst (OEC) layers, FeOOH and NiOOH, which reduces interface recombination at the BiVO4/OEC junction while creating a more favorable Helmholtz layer potential drop at the OEC/electrolyte junction. The resulting BiVO4/FeOOH/NiOOH photoanode achieves a photocurrent density of 2.73 milliamps per square centimenter at a potential as low as 0.6 V versus RHE.

View Full Text

Stay Connected to Science