Complement Is Activated by IgG Hexamers Assembled at the Cell Surface

See allHide authors and affiliations

Science  14 Mar 2014:
Vol. 343, Issue 6176, pp. 1260-1263
DOI: 10.1126/science.1248943

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Hexing Complement

Complement activation is an immediate and potent immune defense mechanism, but how immunoglobulin G (IgG) antibodies activate complement at the molecular level is poorly understood. Using high-resolution crystallography, Diebolder et al. (p. 1260) show that human IgGs form hexameric structures by interacting with neighboring IgG molecules, and the complex then activates complement. Thus, IgG molecules and the complement system can coexist in the blood because complement activation will only be triggered after IgG senses a surface antigen and starts to aggregate.


Complement activation by antibodies bound to pathogens, tumors, and self antigens is a critical feature of natural immune defense, a number of disease processes, and immunotherapies. How antibodies activate the complement cascade, however, is poorly understood. We found that specific noncovalent interactions between Fc segments of immunoglobulin G (IgG) antibodies resulted in the formation of ordered antibody hexamers after antigen binding on cells. These hexamers recruited and activated C1, the first component of complement, thereby triggering the complement cascade. The interactions between neighboring Fc segments could be manipulated to block, reconstitute, and enhance complement activation and killing of target cells, using all four human IgG subclasses. We offer a general model for understanding antibody-mediated complement activation and the design of antibody therapeutics with enhanced efficacy.

View Full Text

Stay Connected to Science