Activity of Protein Kinase RIPK3 Determines Whether Cells Die by Necroptosis or Apoptosis

See allHide authors and affiliations

Science  21 Mar 2014:
Vol. 343, Issue 6177, pp. 1357-1360
DOI: 10.1126/science.1249361

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Life and Cell Death

Trying to protect animals from one form of cell death may lead to death by another. Two protein kinases, known as RIPK1 and RIPK3 promote signaling that leads to cell death by necroptosis. However, Newton et al. (p. 1357, published online 20 February; see the Perspective by Zhang and Chan) found that inhibition of RIPK3 was not always beneficial. Instead, mice expressing a form of RIPK3 with no catalytic activity died from increased apoptotic cell death, but animals lacking the RIPK3 protein entirely, did not die perhaps because RIPK3 restrains apoptosis mediated by caspase-8 by an independent mechanism.


Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 trigger pro-inflammatory cell death termed “necroptosis.” Studies with RIPK3-deficient mice or the RIPK1 inhibitor necrostatin-1 suggest that necroptosis exacerbates pathology in many disease models. We engineered mice expressing catalytically inactive RIPK3 D161N or RIPK1 D138N to determine the need for the active kinase in the whole animal. Unexpectedly, RIPK3 D161N promoted lethal RIPK1- and caspase-8–dependent apoptosis. In contrast, mice expressing RIPK1 D138N were viable and, like RIPK3-deficient mice, resistant to tumor necrosis factor (TNF)–induced hypothermia. Cells expressing RIPK1 D138N were resistant to TNF-induced necroptosis, whereas TNF-induced signaling pathways promoting gene transcription were unperturbed. Our data indicate that the kinase activity of RIPK3 is essential for necroptosis but also governs whether a cell activates caspase-8 and dies by apoptosis.

View Full Text

Stay Connected to Science