Distinct Profiles of Myelin Distribution Along Single Axons of Pyramidal Neurons in the Neocortex

See allHide authors and affiliations

Science  18 Apr 2014:
Vol. 344, Issue 6181, pp. 319-324
DOI: 10.1126/science.1249766

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Patchy Insulation

Myelin insulates neuronal axons such that their electrical signals travel faster and more efficiently. However, not all axons are myelinated equally. Tomassy et al. (p. 319; see the Perspective by Fields) obtained detailed images from two snippets of the adult mouse brain and generated three-dimensional reconstructions of individual neurons and their myelination patterns. The images show that some axons have long, unmyelinated stretches, which might offer sites for building new connections. Thus, myelination is not an all-or-none phenomenon but rather is a characteristic of what may be a specific dialogue between the neuron and the surrounding myelin-producing cells.


Myelin is a defining feature of the vertebrate nervous system. Variability in the thickness of the myelin envelope is a structural feature affecting the conduction of neuronal signals. Conversely, the distribution of myelinated tracts along the length of axons has been assumed to be uniform. Here, we traced high-throughput electron microscopy reconstructions of single axons of pyramidal neurons in the mouse neocortex and built high-resolution maps of myelination. We find that individual neurons have distinct longitudinal distribution of myelin. Neurons in the superficial layers displayed the most diversified profiles, including a new pattern where myelinated segments are interspersed with long, unmyelinated tracts. Our data indicate that the profile of longitudinal distribution of myelin is an integral feature of neuronal identity and may have evolved as a strategy to modulate long-distance communication in the neocortex.

View Full Text

Stay Connected to Science