You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Double Helix, Doubled
Chromatin consists of genomic DNA packaged onto nucleosomes—double donut-shaped complexes of histone proteins. Roughly 150 base pairs of DNA are wrapped around each nucleosome with variable lengths of linker DNA in-between. Using cryogenic electron microscopy, Song et al. (p. 376; see the Perspective by Travers) determined the 11 angstrom–resolution structure of a 12-nucleosome string of DNA. The segment forms a 30-nanometer fiber structure, which is itself double-helical, like the DNA it packages.
Abstract
The hierarchical packaging of eukaryotic chromatin plays a central role in transcriptional regulation and other DNA-related biological processes. Here, we report the 11-angstrom–resolution cryogenic electron microscopy (cryo-EM) structures of 30-nanometer chromatin fibers reconstituted in the presence of linker histone H1 and with different nucleosome repeat lengths. The structures show a histone H1-dependent left-handed twist of the repeating tetranucleosomal structural units, within which the four nucleosomes zigzag back and forth with a straight linker DNA. The asymmetric binding and the location of histone H1 in chromatin play a role in the formation of the 30-nanometer fiber. Our results provide mechanistic insights into how nucleosomes compact into higher-order chromatin fibers.