Flower discrimination by pollinators in a dynamic chemical environment

See allHide authors and affiliations

Science  27 Jun 2014:
Vol. 344, Issue 6191, pp. 1515-1518
DOI: 10.1126/science.1251041

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

How hawkmoths sniff out a flower

Pollinators such as butterflies and bees are the true targets of the flower odors we love so much. Though we might imagine insects “following their noses,” the wealth of odors in the real world can drown out the smell of a flower, making it hard to find. Riffel et al. found that hawkmoths find angel's trumpets by creating a neuronal picture within their antennal lobe, the part of the moth brain that receives olfactory signals from the antennae (see the Perspective by Szyszka). The picture represents both the flower and the background odors. Finding a flower involves a complex reading of both background and target odors, and changes in the background odors—including human pollutants—can hinder the process.

Science, this issue p. 1515; see also p. 1454


Pollinators use their sense of smell to locate flowers from long distances, but little is known about how they are able to discriminate their target odor from a mélange of other natural and anthropogenic odors. Here, we measured the plume from Datura wrightii flowers, a nectar resource for Manduca sexta moths, and show that the scent was dynamic and rapidly embedded among background odors. The moth’s ability to track the odor was dependent on the background and odor frequency. By influencing the balance of excitation and inhibition in the antennal lobe, background odors altered the neuronal representation of the target odor and the ability of the moth to track the plume. These results show that the mix of odors present in the environment influences the pollinator’s olfactory ability.

View Full Text

Stay Connected to Science