Interfacial microfluidic processing of metal-organic framework hollow fiber membranes

See allHide authors and affiliations

Science  04 Jul 2014:
Vol. 345, Issue 6192, pp. 72-75
DOI: 10.1126/science.1251181

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

High-surface-area gas separation membranes

Membranes for gas separation require a combination of high surface area and selective transport pathways. Brown et al. present a potentially scalable route for making high-quality gas separation membranes in a high-surface-area configuration. Using two different solvents flowing in opposite directions, a metal-organic framework material was selectively deposited within hollow polymer fibers. The membranes showed high-performance separation capabilities when tested with mixtures of hydrocarbon gases.

Science, this issue p. 72


Molecular sieving metal-organic framework (MOF) membranes have great potential for energy-efficient chemical separations, but a major hurdle is the lack of a scalable and inexpensive membrane fabrication mechanism. We describe a route for processing MOF membranes in polymeric hollow fibers, combining a two-solvent interfacial approach for positional control over membrane formation (at inner and outer surfaces, or in the bulk, of the fibers), a microfluidic approach to replenishment or recycling of reactants, and an in situ module for membrane fabrication and permeation. We fabricated continuous molecular sieving ZIF-8 membranes in single and multiple poly(amide-imide) hollow fibers, with H2/C3H8 and C3H6/C3H8 separation factors as high as 370 and 12, respectively. We also demonstrate positional control of the ZIF-8 films and characterize the contributions of membrane defects and lumen bypass.

View Full Text

Stay Connected to Science