Dielectric gradient metasurface optical elements

See allHide authors and affiliations

Science  18 Jul 2014:
Vol. 345, Issue 6194, pp. 298-302
DOI: 10.1126/science.1253213

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Extending the range of planar optics

To build miniature optical devices, scientists are using silicon to replace bulky three-dimensional devices with flat versions. A patterned surface consisting of dense arrays of nanoscale silicon strips, which act as antennae, can be designed to work as transparent optical devices for the manipulation of light. Lin et al. used their versatile patterning technique to create a suite of planar optical elements. By patterning a 100-nm layer of silicon into a dense arrangement of nano-antennae, they were able to fabricate gratings, lenses, and axicons—a device that can add a shape to a propagating light beam.

Science, this issue p. 298


Gradient metasurfaces are two-dimensional optical elements capable of manipulating light by imparting local, space-variant phase changes on an incident electromagnetic wave. These surfaces have thus far been constructed from nanometallic optical antennas, and high diffraction efficiencies have been limited to operation in reflection mode. We describe the experimental realization and operation of dielectric gradient metasurface optical elements capable of also achieving high efficiencies in transmission mode in the visible spectrum. Ultrathin gratings, lenses, and axicons have been realized by patterning a 100-nanometer-thick Si layer into a dense arrangement of Si nanobeam antennas. The use of semiconductors can broaden the general applicability of gradient metasurfaces, as they offer facile integration with electronics and can be realized by mature semiconductor fabrication technologies.

View Full Text

Stay Connected to Science