You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Toward quantum teleportation on demand
Quantum information processing relies on the ability to store, manipulate, and propagate information encoded in quantum states of matter. Doing so, however, may destroy or compromise these delicate quantum states. Pfaff et al. present a quantum teleportation protocol that uses two defects in diamond 3 m apart (see the Perspective by Atatüre and Morton). They then map the quantum state of one of the diamond defects onto the other. The work presents a key building block for the successful development of larger quantum networks.
Abstract
Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing.