You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Sourcing corrosive sewer sulfides
Sewer systems are corroding at an alarming rate, costing governments billions of dollars to replace. Differences among water treatment systems make it difficult to track down the source of corrosive sulfide responsible for this damage. Pikaar et al. performed an extensive industry survey and sampling campaign across Australia (see the Perspective by Rauch and Kleidorfer). Aluminum sulfate added as a coagulant during drinking water treatment was the primary culprit in corroding sewer systems. Modifying this common treatment strategy to include sulfate-free coagulants could dramatically reduce sewer corrosion across the globe.
Abstract
Sewer systems are among the most critical infrastructure assets for modern urban societies and provide essential human health protection. Sulfide-induced concrete sewer corrosion costs billions of dollars annually and has been identified as a main cause of global sewer deterioration. We performed a 2-year sampling campaign in South East Queensland (Australia), an extensive industry survey across Australia, and a comprehensive model-based scenario analysis of the various sources of sulfide. Aluminum sulfate addition during drinking water production contributes substantially to the sulfate load in sewage and indirectly serves as the primary source of sulfide. This unintended consequence of urban water management structures could be avoided by switching to sulfate-free coagulants, with no or only marginal additional expenses compared with the large potential savings in sewer corrosion costs.