Shapes and vorticities of superfluid helium nanodroplets

See allHide authors and affiliations

Science  22 Aug 2014:
Vol. 345, Issue 6199, pp. 906-909
DOI: 10.1126/science.1252395

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

X-raying superfluid helium droplets

When physicists rotate the superfluid 4He, it develops a regular array of tiny whirlpools, called vortices. The same phenomenon should occur in helium droplets half a micrometer in size, but studying individual droplets is tricky. Gomez et al. used x-ray diffraction to deduce the shape of individual rotating droplets and image the resulting vortex patterns, which confirmed the superfluidity of the droplets. They found that superfluid droplets can host a surprising number of vortices and can rotate faster than normal droplets without disintegrating.

Science, this issue p. 906


Helium nanodroplets are considered ideal model systems to explore quantum hydrodynamics in self-contained, isolated superfluids. However, exploring the dynamic properties of individual droplets is experimentally challenging. In this work, we used single-shot femtosecond x-ray coherent diffractive imaging to investigate the rotation of single, isolated superfluid helium-4 droplets containing ~108 to 1011 atoms. The formation of quantum vortex lattices inside the droplets is confirmed by observing characteristic Bragg patterns from xenon clusters trapped in the vortex cores. The vortex densities are up to five orders of magnitude larger than those observed in bulk liquid helium. The droplets exhibit large centrifugal deformations but retain axially symmetric shapes at angular velocities well beyond the stability range of viscous classical droplets.

View Full Text

Stay Connected to Science