Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation

See allHide authors and affiliations

Science  22 Aug 2014:
Vol. 345, Issue 6199, pp. 933-937
DOI: 10.1126/science.1253736

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Removing the nucleus in sieve elements

Although a cell's nucleus performs critical command and control functions, some cell types, such as enucleated red blood cells, seem to do without. Sieve element cells in plants similarly carry out their function of transporting nutrients and signals from one end of the plant to the other without the guidance of a nucleus. Furuta et al. watched how the nucleus self-destructs during the development of sieve element cells (see the Perspective by Geldner). The process is regulated under the control of transcription factors, even as the entire nuclear edifice crumbles into nothingness.

Science, this issue p. 933; see also p. 875


Photoassimilates such as sugars are transported through phloem sieve element cells in plants. Adapted for effective transport, sieve elements develop as enucleated living cells. We used electron microscope imaging and three-dimensional reconstruction to follow sieve element morphogenesis in Arabidopsis. We show that sieve element differentiation involves enucleation, in which the nuclear contents are released and degraded in the cytoplasm at the same time as other organelles are rearranged and the cytosol is degraded. These cellular reorganizations are orchestrated by the genetically redundant NAC domain–containing transcription factors, NAC45 and NAC86 (NAC45/86). Among the NAC45/86 targets, we identified a family of genes required for enucleation that encode proteins with nuclease domains. Thus, sieve elements differentiate through a specialized autolysis mechanism.

View Full Text

Stay Connected to Science