Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling

See allHide authors and affiliations

Science  29 Aug 2014:
Vol. 345, Issue 6200, pp. 1065-1070
DOI: 10.1126/science.1255104

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Chromatin mutations disrupt development

Histone proteins form the core packaging material for our genomic DNA, and covalent modifications to amino acid residues in their structure play an important role in the epigenetic control of gene expression. Herz et al. show that specific mutations in the residues that are normally modified to regulate expression cause severe disruption of normal development in the fruit fly. Similar mutations are known to be involved in a subtype of aggressive pediatric brain cancers. Insights into the epigenetic regulatory pathways disrupted by these mutations in Drosophila may suggest possible treatments for human cancers.

Science, this issue p. 1065


Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways.

View Full Text

Stay Connected to Science