Research Article

Crystal structure of the CRISPR RNA–guided surveillance complex from Escherichia coli

See allHide authors and affiliations

Science  19 Sep 2014:
Vol. 345, Issue 6203, pp. 1473-1479
DOI: 10.1126/science.1256328

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

A foreign-DNA–destroying machine

Bacteria have an adaptive immune system, called CRISPR, that identifies invading viruses through their DNA or RNA sequences and cuts them up (see the Perspective by Zhang and Sontheimer). Jackson et al. and Mulepati et al. have determined the structure of the large protein complex, called Cascade, that targets the invading nucleic acids and does the cutting. The seahorse-shaped structure reveals how the 11 subcomponents of Cascade assemble into the final protein complex. The structure also shows how Cascade presents the short CRISPR-derived RNAs so that they can bind and target foreign DNA.

Science, this issue p. 1473 and p. 1479; see also p. 1452


Clustered regularly interspaced short palindromic repeats (CRISPRs) are essential components of RNA-guided adaptive immune systems that protect bacteria and archaea from viruses and plasmids. In Escherichia coli, short CRISPR-derived RNAs (crRNAs) assemble into a 405-kilodalton multisubunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Here we present the 3.24 angstrom resolution x-ray crystal structure of Cascade. Eleven proteins and a 61-nucleotide crRNA assemble into a seahorse-shaped architecture that binds double-stranded DNA targets complementary to the crRNA-guide sequence. Conserved sequences on the 3′ and 5′ ends of the crRNA are anchored by proteins at opposite ends of the complex, whereas the guide sequence is displayed along a helical assembly of six interwoven subunits that present five-nucleotide segments of the crRNA in pseudo–A-form configuration. The structure of Cascade suggests a mechanism for assembly and provides insights into the mechanisms of target recognition.

View Full Text

Stay Connected to Science