You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Aligning a magnetic atomic gas
When a bunch of fermions get together, they obey the Pauli exclusion principle: No two fermions can be in the same quantum state. The fermions populate the available states, starting from those lowest in energy. The boundary between the empty and filled states is called the Fermi surface (FS). For cold gases of fermionic atoms in the lab, the FS is usually spherical. Now, Aikawa et al. observe the FS squishing in a gas of Er atoms, which behave like tiny magnets and align with their magnetic field environment. The squishing reflects the very directional interactions between the Er atoms.
Science, this issue p. 1484
Abstract
In the presence of isotropic interactions, the Fermi surface of an ultracold Fermi gas is spherical. Introducing anisotropic interactions can deform the Fermi surface, but the effect is subtle and challenging to observe experimentally. Here, we report on the observation of a Fermi surface deformation in a degenerate dipolar Fermi gas of erbium atoms. The deformation is caused by the interplay between strong magnetic dipole-dipole interaction and the Pauli exclusion principle. We demonstrate the many-body nature of the effect and its tunability with the Fermi energy. Our observation provides a basis for future studies on anisotropic many-body phenomena in normal and superfluid phases.