You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
High-resolution tectonic solutions
Detailed topographic maps are available for only a small fraction of the ocean floor, severely limited by the number of ship crossings. Global maps constructed using satellite-derived gravity data, in contrast, are limited in the size of features they can resolve. Sandwell et al. present a new marine gravity model that greatly improves this resolution (see the Perspective by Hwang and Chang). They identify several previously unknown tectonic features, including extinct spreading ridges in the Gulf of Mexico and numerous uncharted seamounts.
Abstract
Gravity models are powerful tools for mapping tectonic structures, especially in the deep ocean basins where the topography remains unmapped by ships or is buried by thick sediment. We combined new radar altimeter measurements from satellites CryoSat-2 and Jason-1 with existing data to construct a global marine gravity model that is two times more accurate than previous models. We found an extinct spreading ridge in the Gulf of Mexico, a major propagating rift in the South Atlantic Ocean, abyssal hill fabric on slow-spreading ridges, and thousands of previously uncharted seamounts. These discoveries allow us to understand regional tectonic processes and highlight the importance of satellite-derived gravity models as one of the primary tools for the investigation of remote ocean basins.