Resident memory CD8 T cells trigger protective innate and adaptive immune responses

See allHide authors and affiliations

Science  03 Oct 2014:
Vol. 346, Issue 6205, pp. 98-101
DOI: 10.1126/science.1254536

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Resident memory T cells sound the alarm

Immunological memory protects against reinfection. Resident memory T cells (TRM) are long-lived and remain in the tissues where they first encountered a pathogen (see the Perspective by Carbone and Gebhardt). Schenkel et al. and Ariotti et al. found that CD8+ TRM cells act like first responders in the female reproductive tissue or the skin of mice upon antigen reencounter. By secreting inflammatory proteins, TRM cells rapidly activated local immune cells to respond, so much so that they protected against infection with an unrelated pathogen. Iijima and Iwasaki found that CD4+ TRM cells protected mice against reinfection with intravaginal herpes simplex virus 2.

Science, this issue p. 98, p. 101, p. 93; see also p. 40


The pathogen recognition theory dictates that, upon viral infection, the innate immune system first detects microbial products and then responds by providing instructions to adaptive CD8 T cells. Here, we show in mice that tissue resident memory CD8 T cells (TRM cells), non-recirculating cells located at common sites of infection, can achieve near-sterilizing immunity against viral infections by reversing this flow of information. Upon antigen resensitization within the mouse female reproductive mucosae, CD8+ TRM cells secrete cytokines that trigger rapid adaptive and innate immune responses, including local humoral responses, maturation of local dendritic cells, and activation of natural killer cells. This provided near-sterilizing immunity against an antigenically unrelated viral infection. Thus, CD8+ TRM cells rapidly trigger an antiviral state by amplifying receptor-derived signals from previously encountered pathogens.

View Full Text

Stay Connected to Science