You are currently viewing the summary.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Summary
Learning triggers neuronal changes in the brain that contribute to information acquisition and memory formation, including the activity and strength of existing synapses, the formation of new synapses, and possibly the birth of new neurons (1). Therefore, it is not surprising that neurons have been seen as the sole components of the nervous system, capable of responding to experience and responsible for learning and long-term behavioral plasticity. However, this notion is being challenged by recent findings on glial biology. On page 318 of this issue, McKenzie et al. (2) add to this argument by revealing that the generation of new oligodendrocytes—one of the brain's non-neuronal cell types—is required for learning a complex motor skill. The finding advances our understanding of brain plasticity and points to roles for glia and myelin in cognitive function.