You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
In the past decade, attosecond technology has opened up the investigation of ultrafast electronic processes in atoms, simple molecules, and solids. Here, we report the application of isolated attosecond pulses to prompt ionization of the amino acid phenylalanine and the subsequent detection of ultrafast dynamics on a sub–4.5-femtosecond temporal scale, which is shorter than the vibrational response of the molecule. The ability to initiate and observe such electronic dynamics in polyatomic molecules represents a crucial step forward in attosecond science, which is progressively moving toward the investigation of more and more complex systems.
A very quick look at phenylalanine
Over the past decade, laser technology has pushed back the fastest directly observable time scale from femtoseconds (quadrillionths of a second) to attoseconds (quintillionths of a second). For the most part, attosecond studies so far have probed very simple molecules such as H2 and O2. Calegari et al. now look at a more elaborate molecule—the amino acid phenylalanine. They tracked changes in the electronic structure of the compound after absorption of an ultrafast pulse, before the onset of conventional vibrational motion.
Science, this issue p. 336