You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Y male plants affect female development
Although most plants have both male and female organs within a single flower, some produce separate male and female plants. In some cases, such as persimmons, males are determined by a Y chromosome. Akagi et al. examined the gene transcript differences between male and female persimmons. A gene on the Y chromosome regulated a non–sex chromosome–linked small RNA that suppresses female organ development. This small RNA was localized to male flowers and could affect female development in other plant species. The evolutionary history of these genes suggests that they are tied to the origin of the separation of sexes in the persimmon family.
Science, this issue p. 646
Abstract
In plants, multiple lineages have evolved sex chromosomes independently, providing a powerful comparative framework, but few specific determinants controlling the expression of a specific sex have been identified. We investigated sex determinants in the Caucasian persimmon, Diospyros lotus, a dioecious plant with heterogametic males (XY). Male-specific short nucleotide sequences were used to define a male-determining region. A combination of transcriptomics and evolutionary approaches detected a Y-specific sex-determinant candidate, OGI, that displays male-specific conservation among Diospyros species. OGI encodes a small RNA targeting the autosomal MeGI gene, a homeodomain transcription factor regulating anther fertility in a dosage-dependent fashion. This identification of a feminizing gene suppressed by a Y-chromosome–encoded small RNA contributes to our understanding of the evolution of sex chromosome systems in higher plants.